- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000100002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
FARSI, CARLA (1)
-
Farsi, Carla (1)
-
GILLASPY, ELIZABETH (1)
-
Gillaspy, Elizabeth (1)
-
Herr, John E (1)
-
JORGENSEN, PALLE (1)
-
Jorgensen, Palle (1)
-
Jorgensen, Palle E_T (1)
-
KANG, SOORAN (1)
-
Kang, Sooran (1)
-
PACKER, JUDITH (1)
-
Packer, Judith (1)
-
Weber, Eric S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
Hinz, M (1)
-
Okoudjou, K (1)
-
Rogers, L (1)
-
Ruiz, P (1)
-
Teplyaev, A (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ruiz, P; Hinz, M; Okoudjou, K; Rogers, L; Teplyaev, A (Ed.)
-
FARSI, CARLA; GILLASPY, ELIZABETH; JORGENSEN, PALLE; KANG, SOORAN; PACKER, JUDITH (, Ergodic Theory and Dynamical Systems)In this paper, we define the notion of monic representation for the $$C^{\ast }$$ -algebras of finite higher-rank graphs with no sources, and we undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the commutative $$C^{\ast }$$ -algebra of the continuous functions on the infinite path space, admit a cyclic vector. We link monic representations to the $$\unicode[STIX]{x1D6EC}$$ -semibranching representations previously studied by Farsi, Gillaspy, Kang and Packer (Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl. 434 (2015), 241ā270) and also provide a universal representation model for non-negative monic representations.more » « less
-
Farsi, Carla; Gillaspy, Elizabeth; Jorgensen, Palle; Kang, Sooran; Packer, Judith (, Integral Equations and Operator Theory)
An official website of the United States government

Full Text Available